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Abstract: In this paper we continue studying the decay of unstable FZZT branes initiated

in [1], [2]. The mass of tachyonic mode in this model can be chosen arbitrarily small and

we use it as a perturbative parameter. In [2] a time-dependent boundary conformal field

theory (BCFT) describing the decay process was studied and it was shown that in a certain

sense this BCFT interpolates between two stationary BCFT’s corresponding to the UV and

IR fixed points of the associated RG flow. In the present work we find in the leading order

vertex operators of the time-dependent BCFT. We identify the “in” and “out” vertex

operators assigned to the UV and IR fixed points and compute the related Bogolyubov

coefficients. We show that there is a codimension one subspace of the out-going states for

which pair creation amplitudes are independent of the initial wave function of the tachyonic

mode. We demonstrate that such amplitudes can be computed within the framework of

first quantized open string theory via suitably defined string two-point functions. We also

evaluate a three point function which we interpret as an amplitude for string triplet creation

due to interaction. Some peculiarities of scattering amplitudes in the presence of tachyonic

modes in the far past are discussed.
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1. Introduction

Time dependent backgrounds in string theory are at present very poorly understood. As a

first step one may wish to understand perturbative string amplitudes in exact time depen-

dent backgrounds. Constructing perturbative amplitudes for such models involves making

sense of functional integrals over string worldsheets that involve a field with a negative-

definite metric. The last one describes a time-like direction in target space. Assuming that

the ghost sector is factorized and that such integrals are defined by means of a suitable

Wick rotation or otherwise, the matter part of an exact background is described by some
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non unitary two-dimensional conformal field theory (CFT). One can then consider vertex

operators corresponding to infinitesimal deformations of the CFT at hand and define string

amplitudes in the usual way by integrating the CFT correlators over the moduli space of

punctured Riemann surfaces.

There is next a question of physical interpretation for such amplitudes. Clearly one

should seek an S-matrix type interpretation. It seems natural to us to try following in

this task as closely as possible the analogous field theoretical constructions. It is not our

goal in this paper to put forward a general string-theoretic scheme for scattering in time-

dependent backgrounds. Rather we will study in detail one particular model, which is well-

controlled analytically, and for which we will be able to extend the main field theoretical

constructions such as “in” and “out” physical states, Klein-Gordon type conserved inner

product, Bogolyubov coefficients and particle creation amplitudes. For this model we

will establish a relation between a string theoretic two point function and a tachyon pair

creation amplitude. We will also compute a string three point function and conjecture its

interpretation in terms of particle creation amplitudes.

As our considerations will essentially go in parallel with the field theoretical set up it

will be instructive to recount it first. This material is fairly standard so we will be brief

(see [14, 15] for a comprehensive discussion). This will be followed by a short discussion of

how much of this set up can be brought over into string theory in a straightforward way

and what are the problems related to the rest of the machinery. A disinterested reader

may wish to go directly to the next section where the main body of the paper starts.

Consider for definiteness a scalar field φ(x) with a cubic interaction in a non-stationary

spacetime. To define an S-matrix one typically restricts oneself to globally hyperbolic

spacetimes and assumes that the interaction is switched off adiabatically for t → ±∞. The

solution to the equation of motion

[�x +m2 + ξRx]φ(x) + λφ2(x) = 0 (1.1)

is then assumed to become asymptotically free

lim
t→−∞

φ(x) = φin(x) , (1.2)

lim
t→+∞

φ(x) = φout(x) (1.3)

where

[�x +m2 + ξRx]φin(out)(x) = 0 . (1.4)

To construct the “in” and “out” Fock spaces one needs to define which solutions of the

free asymptotic equations annihilate the vacuum. In certain spacetimes there are natural

definitions of positive frequency asymptotic solutions which provide a natural definition

of the “in” and “out” vacua. For example if the spacetime at hand is asymptotically

stationary both in the far past and future, i.e. has asymptotic time-like Killing vectors for

t → ±∞, it is natural to define positive frequency solutions as appropriate eigenstates of

those Killing vectors.

– 2 –



J
H
E
P
0
8
(
2
0
0
8
)
0
1
1

Given a definition of positive frequency modes the construction of the “in” and “out”

Fock spaces goes as follows. A conserved scalar product on the space of solutions to the

free equation (1.4) is defined as

(φ1, φ2) = −i
∫

Σ

(φ1∂µφ
∗
2 − φ∗2∂µφ1)

√−gdΣµ (1.5)

where Σµ is the future directed surface element to a Cauchy surface Σ. Consider two

complete sets of solutions up, u
∗
p and vq, v

∗
q satisfying

(up, up′) = δp,p′ , (u∗p, u
∗
p′) = −δp,p′ , (up, u

∗
p′) = 0 (1.6)

and similarly for vq. In addition we assume that the modes up are purely positive frequency

as t → −∞ and the modes vq are purely positive frequency as t → +∞. We can expand

the “in” and “out” fields as

φin(x) =
∑

p

[ain
p up(x) + ain†

p u∗p(x)] ,

φout(x) =
∑

q

[aout
q vq(x) + aout†

q v∗q (x)] . (1.7)

The in and out Fock space vacua are defined by

ain
p |0〉in = 0 , aout

q |0〉out = 0 (1.8)

and the multiparticle states as

|p1 . . . pn〉in =
n∏

i=1

ain†
pi

|0〉in ,

|q1 . . . qm〉out =

m∏

i=1

aout†
qi

|0〉out . (1.9)

The S-matrix elements are then defined as overlaps

out〈q1 . . . qm|p1 . . . pn〉in . (1.10)

In particular the amplitudes of the form

out〈q1 . . . qm|0〉in (1.11)

are the particle creation amplitudes.

Since the sets of modes up, u
∗
p and vq, v

∗
q are each complete they are related by a

Bogolyubov transformation:

up =
∑

q

(αp,qvq + βp,qv
∗
q ) ,

vq =
∑

p

(α∗
p,qup − βp,qu

∗
p) . (1.12)
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The orthogonality conditions (1.6) imply a number of relations between the Bogolyubov

coefficients αp,q, βp,q:

∑

q

(αp1,qα
∗
p2,q − βp1,qβ

∗
p2,q) = δp1,p2

,
∑

q

(αp1,qβp2,q − βp1,qαp2,q) = 0 ,

∑

p

(α∗
p,q1

αp,q2
− βp,q1

β∗p,q2
) = δq1,q2

,
∑

p

(α∗
p,q1

βp,q2
− α∗

p,q2
βp,q1

) = 0 . (1.13)

One can show that in the case of non-interacting theory (λ = 0) all of the S-matrix am-

plitudes (1.10) are expressible via the Bogolyubov coefficients. Only even numbers of parti-

cles can be created in this case. In particular pair creation amplitudes can be expressed as

out〈q1q2|0〉in = out〈0|0〉in
∑

p

β∗p,q1
(α−1)∗q2,p . (1.14)

Note that relations (1.13) imply that the operator αp,q has a bounded inverse (α−1)q2,p [19].

In the interacting case one can define a modified set of Feynman rules and reduction

formulas [14, 16]. In those rules one essentially separates the interaction effects which are

taken care of by a suitably defined S-matrix operator and the effects due to the explicit

time-dependence which are encoded in Bogolyubov’s coefficients. Interaction causes ad-

ditional particle creation. Thus in φ3 theory there is a tree level triple creation process

(see [17, 16] for some explicit computations).

Let us remark that although in the above the time dependence was coming from a

time-dependent space-time metric, most of the discussion generalizes to other instances of

time dependence. For example one can consider an interacting scalar field in flat spacetime

coupled to an external time-dependent potential V (x, t):

[�x +m2 + V (x, t)]φ(x) + λφ2(x) = 0 . (1.15)

All one needs in order to extend the above discussion to this case is some definition of

positive frequency modes. For example in a case when the potential vanishes (or goes to a

constant) at t→ ±∞ the definition is obvious. Note that the inner product defined in (1.5)

is also conserved on solutions to (1.15).

We now turn to string theory. What follows contains some speculations concerning

the structure of general formalism of perturbative string theory in time-dependent back-

grounds. While supported by known examples these speculations should be taken as such.

We first remark that natural analogues of wave functions are string physical states whose

matter part we denote by |V 〉 which are annihilated by the positive modes of Virasoro

algebra: Ln|V 〉 = L̄n|V 〉 = 0, n > 0 and satisfy the mass shell condition

(L0 + L̄0)|V 〉 = 2|V 〉 . (1.16)

The last one is the direct analogue of the free wave equation (1.4). The 2 in the right hand

side of (1.16) should be changed to 1 for the case of open strings. In the simplest situation

the zero mode t of the time-like field on the worldsheet provides us with a macroscopic

time and we can consider the t→ ±∞ asymptotic regions of the target space as the regions
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where we may be able to set up the “in” and “out” scattering states. One next would

want to specify positive frequency modes in the asymptotic regions. Like in the case of

quantum field theory [14, 15] such definitions depend on the particulars of the physical

problem at hand. One can imagine asymptotic time-like Killing vectors to be replaced by

worldsheet currents Jα
±(z, z̄) which are conserved in the asymptotic t→ ±∞ regions of the

string Hilbert space. That is ∂αJ
α
± ∼ 0 for t → ±∞. In this case a basis for incoming

positive frequency states can be defined in terms of on-shell states which are eigenvectors

of the asymptotic charge

Ω− = i lim
t→−∞

∫
dzα(J−)α

of the eigenvalue ω− with ω− ≥ 0. Analogously one defines positive frequency out states

as eigenvectors of positive eigenvalue for the asymptotic charge Ω+ set up in the t→ +∞
region. If V is a vertex operator creating a positive frequency state |V 〉 then its Hermitean

conjugate V † creates a negative frequency state denoted |V 〉∗.
As in the case of field theory we can specify analogs of one-particle “in” and “out”

states using a conserved inner product. In general such an inner product (as well as the

second quantization symplectic form) can be derived from a string field theory kinetic

term. The inner product takes a particularly simple form when ghosts are factorized and

the matter CFT operator L0 has the form

L0 = ∂2
t + L̃0

where i∂t is the time-like field zero mode momentum operator and L̃0 is assumed to be

unitary with respect to the BPZ inner product 〈. . .〉BPZ in the CFT state space [3]. In this

situation one can define a conserved hermitean inner product on the space of solutions to

the on-shell condition (1.16) as

(V1, V2) ≡
i

2
[〈V1|∂tV2〉BPZ − 〈V2|∂tV1〉BPZ] . (1.17)

We can now pick bases of positive frequency states |P 〉in, |Q〉out that together with the

conjugate states |P 〉∗in, |Q〉∗out satisfy conditions similar to (1.6) with respect to the inner

product (1.17). Here P and Q are complete sets of asymptotic quantum numbers labeling

the positive frequency “in” and “out” states respectively. The negative frequency states

|P 〉∗in, |Q〉∗out can be interpreted as incoming or respectively outgoing string fundamental

excitations or particles. Let us denote by V in
P and V out

Q the world sheet vertex operators

corresponding to the states |P 〉in, |Q〉out. Assuming both bases are complete these operators

are related by Bogolyubov transformations

V in
P =

∑

Q

(αP,QV
out
Q + βP,QV

out†
Q ) ,

V out
Q =

∑

P

(α∗
P,QV

in
P − βP,QV

in†
P ) . (1.18)

Define operators

V in
Q =

∑

P

(α−1)Q,PV
in
P .
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These operators are pure positive frequency in the far past and in the far future their

positive frequency part is V out
Q . It seems natural to us to conjecture that the string theoretic

two-point function of such operators gives a normalized pair creation amplitude

1

2
〈V in

Q1
V in

Q2
〉str =

∑

P

βP,Q1
(α−1)Q2,P =

in〈0|Q1Q2〉out

in〈0|0〉out
. (1.19)

A similar conjecture was put forward in [8] regarding certain CFT two-point functions

and pair creation rates. While it may work for a certain type of models such as time-like

Liouville Theory considered in [8], it seems to us that in general, when the time-like part

of the CFT and the spatial part are mixed ( as in the model considered in this paper)

one should consider the string two-point function. The main difficulty with this proposal

is technical. There is no general prescription for computing a string-theoretic two-point

function. A formal expression for a two-point function in a noncompact target space

contains an infinity coming from integrating over target space zero modes and a vanishing

factor arising from the division by the infinite volume of the group of worldsheet modular

transformations fixing two points. The cancellation of the two infinities is relatively well

understood only for noncritical strings [10, 9, 12, 13].

String theory is an interacting theory. There should be prescriptions to compute mul-

tiparticle S-matrix amplitudes of the type (1.10) that take into account string interactions.

We conjecture that whenever string n-point functions of operators V in
Q can be defined they

give perturbative contributions (at each genus) to the n-particle creation amplitudes

〈V in
Q1

V in
Q2
. . .V in

Qn
〉str = Cn

in〈0|Q1Q2 . . . Qn〉out

in〈0|0〉out

where Cn is a numerical normalization factor.

In the above discussion there were no specific points referring to closed strings so if

correct the same scheme should apply also to open string time-dependent backgrounds.

Also very mild assumptions were made on the nature of the time-dependence. In this

paper we consider a particular model describing a time dependent process of open string

tachyon condensation in two-dimensional string theory. We will find that the presence

of tachyon instability in the initial system brings about certain additional complications

into the above general scheme. Namely solutions exponentially growing in the far past

are needed for completeness of the out scattering states. We suspect this to be a generic

situation for decays of unstable backgrounds. This results on the one hand in an additional

ambiguity in defining the initial state of the system and on the other hand, from the

CFT perspective, in the need to define correlation functions for exponentially blowing

up operators. The formalism of first quantized string theory per se does not contain a

prescription to compute such correlation functions. Nevertheless we will show that for

a large class of vertex operators (for a codimension one subspace in the total space of

solutions) the correlation functions do not depend on these additional ambiguities. We

will demonstrate that for these states the appropriately defined string two point functions

give pair creation amplitudes. We will also compute a string three point amplitude and
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conjecture its interpretation in terms of particle triplet creation rate. A more detailed

discussion of our results is given in the final section of the paper.

The main body of the paper is organized as follows. In section 2 we introduce the

model we study and give a review of main results obtained in [1, 2]. In section 3 we

explain our approach to constructing vertex operators in our time-dependent model and

compute explicitly vertex operators asymptoting to plane waves in the infinite past. In

section 4 we discuss the conserved inner product and define normalized “in” and “out”

states. In section 5 a basis of vertex operators asymptoting to positive frequency out

states are constructed and the exponential blow up of such solutions in the infinite past

is demonstrated. In section 6 we analyze the Bogolyubov transformation relating the

“in” and “out” vertex operators. In section 7 we develop the secondary quantization

of the model. We construct a family of physically natural initial states in the oscillators

state space. In section 8 a string theoretic two point function is computed in a certain

regularization scheme. It is shown that for a large (codimension one) class of out states

it gives a pair production rate. In section 9 a string three point function is computed. In

the final section we discuss our results and point at some open questions. The appendix

contains some technical details of the computations.

2. The model

In this section we explain the particulars of the model and review the main results obtained

in [1, 2]. Our model is constructed in the framework of c = 1 noncritical string theory (see

e.g. [9] for a review). The worldsheet CFT is a product of a free timelike boson X0 and

the c = 25 Liouville theory. The action for X0 is

SX0
= − 1

4π

∫
d2x (∇X0)

2 (2.1)

where the sign in front of the action means that X0 is timelike. The Liouville theory is a

conformal field theory of an interacting noncompact boson φ with the action functional

SL =
1

4π

∫
d2x[(∇φ)2 + 4πµe2bφ] (2.2)

and the background charge Q = b + 1/b is introduced via the the asymptotic at spatial

infinity φ(x) ∼ −Q log x2. This theory is by now well understood and we refer the reader

to [4] for a review of essential results. From now on we set b = 1 that corresponds to

the central charge c = 25. At the level of sigma model description the c = 25 Liouville

theory is characterized by a flat 2D metric and the following backgrounds for the dilaton

and tachyon fields Φ and T :

Φ(φ,X0) = φ , T (φ,X0) = µe2φ . (2.3)

The linear dilaton profile implies that the string coupling goes to zero in the φ → −∞
region and blows up in the φ → +∞ region. The strings however are essentially confined

to the weakly coupled region by the tachyon potential. String scattering in and out states

are naturally set up in the φ→ −∞ asymptotic region.

– 7 –
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We are further interested in the open string sector of this theory which is introduced via

Neumann type conformal boundary conditions. The corresponding D1-branes are referred

to in the literature as FZZT branes after the authors of [5, 6]. At the semiclassical level

these boundary conditions are defined by adding to the bulk theory put on an upper half

plane {(x, τ)|x ∈ R, τ ≥ 0} a boundary action

S∂ = µB

∫

R

dx eφ (2.4)

which results in the boundary conditions

i(∂ − ∂̄)φ = 2πµBe
φ . (2.5)

By solving the corresponding boundary conformal field theory (BCFT) exactly it was found

that at the quantum level for each value of the boundary coupling µB there are countably

many physically distinct boundary conditions [5 – 7, 1]. The quantum boundary conditions

are parameterized by a parameter δ related to µB via1

cos[π(1 + δ)] =
µB√
µ
. (2.6)

In particular the spectrum of boundary operators depends on the value of δ. Before we

discuss the latter a note on the choice of worldsheet is in order. For the most part of the

paper our computations will be done on a disc D = {(r, σ)|0 ≤ r ≤ 1, 0 ≤ σ ≤ 2π}. This

concerns in particular the computations of the two and three point functions in sections 8

and 9. To use the state-operator correspondence in a BCFT we invoke a Hamiltonian

quantization on a strip S = {(σ, τ)|0 ≤ σ ≤ π} with the boundary condition specified by δ

imposed on both edges of the strip. The corresponding Hilbert space has the form

HB
δδ =

∫

R+

dP VP ⊕
{
∅ for δ < 0 ,

Vϑ for δ > 0 ,
(2.7)

where ϑ = iδ and VQ is the irreducible unitary representation of the Virasoro algebra

with c = 25 and the highest weight ∆Q = 1 + Q2. The above representation means that

for each value of δ there is a continuum of δ-function normalizable states with weights

∆P = 1 + P 2 , P ∈ R+ whose boundary fields we denote Φδ
P (x). In addition for δ > 0

there is a single discrete normalizable state whose vertex operator we denote by Φδ
ϑ(x).

The conformal weight of this operator is ∆ϑ = 1 − δ2. In many manipulations it can be

treated on equal footing with the operators Φδ
P if one regards it as an operator Φδ

P with

P = ϑ = iδ. We choose normalizations of our operators as in [2] to be given in more detail

shortly.

For the X0 field we consider the Neumann boundary condition. The corresponding

Virasoro primary states are denoted |ω〉X0
:

Lopen
0 |ω〉X0

= −ω2|ω〉X0
Lopen

n |ω〉X0
= 0 , n > 1 . (2.8)

1The parameter δ is related to the parameter σ from [7, 1] as 2σ = 1− δ and to the parameter s from [5]

as s = i(1 + δ).
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We introduce zero modes of the fields as

t =

∫ π

0
dσ X0(σ, 0) φop

0 =

∫ π

0
dσ φ(σ, 0) . (2.9)

This allows us to define the wave functions for the highest weight states |P 〉 ⊗ |ω〉X0
as

ΨP (φop
0 , t) = 〈φop

0 |P 〉 · 〈t|ω〉X0
= 〈φop

0 |P 〉 · eiωt (2.10)

and similarly with P replaced by ϑ. In the weak coupling region φop
0 → −∞ the Liouville

parts of wavefunctions behave as

ΨP (φop
0 ) ∼ Cδ(P )eiPφop

0 + Cδ(−P )e−iPφop
0 (2.11)

where Cδ(P ) is a certain normalization factor. One can show (see e.g. [2] appendix B.1)

that Cδ(ϑ) = 0 and thus the wavefunction Ψϑ(φop
0 ) decays exponentially in the asymptotic

region that is characteristic of a bound state.

Since ∆ϑ is less than one the corresponding open string state is tachyonic. The string

spectrum contains an unstable excitation with the vertex operator Φδ
ϑe

δX0 whose wavefunc-

tion increases exponentially with t. We thus have a system with a localized open string

tachyon whose mass δ can be chosen to be arbitrarily small. From the target space perspec-

tive the smallness of δ means that the tachyon condensation process is slow rolling. This

process can be described by deforming the (Liouville)×X0 BCFT adding to it a boundary

interaction term generated by the tachyon vertex operator

Sλ = λ

∫

R

dx [Φδ
ϑe

δX0 ](x) . (2.12)

Looking at the operator product expansions of the multiple products of the tachyon op-

erator with itself it is easy to see that no divergences arise when treating the interaction

term perturbatively. The deformed theory is therefore conformal. The smallness of the

parameter δ can then be used by employing the RG resummation technique to construct

an effective Lagrangian that gives the boundary state to the leading order in δ [2].

For future reference we give here the details of the spectrum of boundary operators of

the FZZT branes in the δ → 0 limit. The two point functions in the normalizations of [2]

are

〈Φδ
P (x1)Φ

δ
P ′(x2)〉 = |x1 − x2|−2∆PCδ(P )Cδ(−P )δ(P − P ′) , (2.13)

〈Φδ
ϑ(x1)Φ

δ
ϑ(x2)〉 = |x1 − x2|−2∆ϑdδ (2.14)

where the factors Cδ(P ) and dδ in the leading order are

Cδ(P ) ∼ µ1/2
r

π(δ + iP )

iP
, dδ ∼ πµr

δ
. (2.15)

Here and elsewhere when taking the δ → 0 asymptotics appropriate for conformal per-

turbation theory one should assume that the Liouville momenta P are all of the order δ

(see [2] for a detailed explanation). We will be often using the rescaled variables

p = P/δ q = Q/δ , etc. (2.16)

– 9 –
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which are of the order δ0.

The operator product expansions have the form

Φδ
P2

(x2)Φ
δ
P1

(x1) =

∞∫

0

dP3 F
P3

P2P1
|x2 − x1|∆P3

−∆P2
−∆P1Φδ

P3
(x1) + (2.17)

+fϑ
P2P1

|x2 − x1|∆ϑ−∆P2
−∆P1Φδ

ϑ(x1) + descendants

where P2 and P1 can also assume the value ϑ. The asymptotic formulas for the OPE

coefficients are

FP3

P2P1
∼ 2P 2

3

π(δ2 + P 2
3 )
, (2.18)

fϑ
P2P1

= −2πiResP3=iδF
P3

P2P1
∼ 2δ (2.19)

where P1 and P2 can take the value ϑ.

The three point functions to the leading order in δ all take the same value

〈Φδ
P1

(x1)Φ
δ
P2

(x2)Φ
δ
P3

(x3)〉 ∼ 2π|x1 − x2|∆12 |x2 − x3|∆23 |x3 − x1|∆13 (2.20)

where ∆ij are standard combinations of conformal dimensions. In the last formula any of

Pi’s can take the value ϑ.

The leading order contributions from interaction (2.12) to correlation functions come

from short distances. Hence, although the theory is finite, one can use the RG resummation

technique to construct the effective Lagrangian [2]. Introducing a short distance cutoff ǫ

we write down a renormalized boundary action that includes all operators near-marginal

in the δ ≪ 1 limit which are generated via short distance expansions

Sren
λ =

∞∑

n=1

∫

R

dx

(
Unǫ

(n2−1)δ2

[enδX0Φδ
ϑ](x) +

∞∫

0

dP λn(P )ǫn
2δ2+P 2

[enδX0Φδ
P ](x)

)
. (2.21)

The RG equations arise as conditions for ǫ-independence of the correlation functions. These

equations supplemented by the appropriate conditions fixing the bare couplings can be

solved explicitly [2]. The results are most elegantly summarized in terms of generating

functions

λ(q, t) =
∞∑

n=1

λn(qδ)enδt , U(t) =
∞∑

n=1

Une
nδt (2.22)

where the parameter t can be identified with the zero mode of the X0 field. The function

U(t) can be expressed via elementary functions and the function λ(q, t) via the hypergeo-

metric function 2F1. The explicit expressions can be found in [2] and will not be used in

this paper.

A combination of the generating functions that will be important later is

W (t) = U(t) + δ

∞∫

0

dq λ(q, t) . (2.23)
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It has a simple explicit expression

W (t) = δ

(
νeδt

1 + νeδt

)
(2.24)

where ν = λ/δ - the rescaled bare coupling λ from (2.12).

Although the generating functions (2.22) ab initio had a radius of convergence bounded

by t≪ δ−1 they have a natural analytic continuation for all values2 of t. In particular one

can find the t → ∞ asymptotic which can be interpreted as the far future of the FZZT

brane decay process. The generating function U(t) tends to a constant u∗ = 2δ while the

couplings of the continuous operators have asymptotics

λ(q, t) → − 2

π(1 + q2)
+

q

sinh(πq)

(
eiqδtνiq

1 + iq
+
e−iqδtν−iq

1 − iq

)
. (2.25)

It was further shown that the constant (t-independent) parts of the above asymptotics

are described by the boundary condition characterized by the parameter −δ while the

oscillatory piece in (2.25) was interpreted as radiation. The conclusion of [2] was that the

0 < δ ≪ 1 FZZT brane decays into the δ∗ = −δ brane leaving behind a radiation travelling

towards φop
0 = −∞.

It is one of the purposes of the present paper to derive the radiation produced in the

decay process from first principles.

3. Time-dependent vertex operators

3.1 First order conformal deformation equations

We would like to find marginal operators of the time-dependent BCFT (2.12). In general

marginal operators of a given (B)CFT can be identified with its infinitesimal deformations.

Consider an infinitesimal perturbation of the boundary theory (2.4), (2.12) by a term

ξ0

∫

R

dx [eiPX0Φδ
|P |](x)

where ξ0 is a constant (the deformation parameter) and P is any real number except zero.

The P = 0 case needs special care and will be treated separately later. The perturbing

operator eiPX0Φδ
|P | is a primary of dimension 1 relative to the undeformed (FZZT) ×X0

boundary theory. The tachyon interaction term (2.12) will result in mixing of this operator

with operators e(nδ+iP )X0Φδ
Q, e(nδ+iP )X0Φδ

ϑ, n ∈ Z+ that can be found via operator product

expansion. Thus we are led to consider a combined renormalized action

Sren
Bd = Sren

λ + ∆Sren
µ,η (3.1)

2It is interesting to note in regard with the analytic continuation that it is well defined only for ν > 0.

For negative values of ν the analytically continued solution will hit a branch cut for sufficiently large values

of t. This can be correlated with the fact that there is no perturbative fixed point for the RG flow triggered

by the relevant operator Φδ

ϑ with a negative coupling constant
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where Sren
λ is given by (2.21) and

∆Sren
µ,η =

∫

R

dx

∞∑

n=0

∫
dQµn(P,Q)ǫ(nδ+iP )2+Q2

[e(nδ+iP )X0Φδ
Q](x) +

+

∫

R

dx

∞∑

n=1

ηn(P )ǫ(nδ+iP )2−δ2

[e(nδiP )X0Φδ
ϑ](x) . (3.2)

The last perturbation is considered only to first order in µn(P,Q) and ηn(P ).

The beta functions for the couplings µn(P,Q) and ηn(P ) can be computed via con-

formal perturbation theory as in [2]. It is clear from the general form of the OPE’s at

hand that the RG equations for the original couplings Un and λn(P ) are unaffected by the

presence of the new couplings3 in ∆Sren
µ,η and are given by the solution found in [2]. The

additional RG equations for the new couplings read

ǫ
dµn(P,Q)

dǫ
= −(Q2 + (nδ + iP )2)µn(P,Q) − 2

n∑

l=1

∫
dQ′ FQ

ϑQ′Ulµn−l(P,Q
′) −

−2

n∑

l=1

[∫ ∫
dQ′dQ′′ FQ

Q′Q′′λl(Q
′′)µn−l(P,Q

′)

+FQ
ϑPUlηn−l(P ) +

∫
dQ′ λl(Q

′)ηn−l(P )

]

ǫ
dηn(P,Q)

dǫ
= (δ2 − (nδ + iP )2)ηn(P ) − 2

n−1∑

l=1

fϑ
ϑϑUlηn−l(P )

−
n∑

l=1

[∫
dQfϑ

ϑQλl(Q)ηn−l(P ) +

∫
dQfϑ

ϑQUlµn−l(P,Q)

+

∫ ∫
dQdQ′ fϑ

QQ′λl(Q
′)µn−l(P,Q)

]
. (3.3)

The supplementary renormalization conditions are

lim
ǫ→0

ηn(P )ǫ(nδ+iP )2−δ2

= 0 ,

lim
ǫ→0

µn(P,Q)ǫ(nδ+iP )2+Q2

= 0 for n > 0 ,

lim
ǫ→0

µ0(P,Q)ǫQ
2−P 2

= ξ0δ(P −Q) (3.4)

where ξ0 is constant. The above equations with these conditions can be solved recursively

and are equivalent to

ǫ
dµn(P,Q)

dǫ
= 0 = ǫ

dηn(P )

dǫ
(3.5)

which means, as anticipated, that the corresponding perturbation generated by a nonvan-

ishing ξ0 is first order marginal.

3This is true only for P 6= 0.
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An additional comment perhaps is in order on the meaning of the renormalized ac-

tion (3.1). The renormalized action (2.21) is an effective action that can be used to compute

the leading orders in δ of the disc partition function and one-point functions of the bulk

operators of the time dependent BCFT (2.12). The renormalized action ( 3.1) with the

constants µn and ηn treated to the first order can be used to compute the leading order

in δ of the correlators of marginal boundary operators of the BCFT (2.12). Solutions to

the (3.3) substituted into (3.2) thus give renormalized boundary marginal operators labeled

by P :

ΦP (ν) =

∞∑

n=0

∞∫

0

dQµn(P,Q)[e(nδ+iP )X0Φδ
Q] +

∞∑

n=1

ηn(P )[e(nδiP )X0Φδ
ϑ] (3.6)

where we included the coupling constant ν in the notation to signify that these are primaries

of the deformed theory (2.12).

In the leading order in δ one uses the asymptotic expressions for the OPE coeffi-

cients (2.18), (2.19) in the above equations to obtain

(Q2 + (nδ + iP )2)µn(P,Q) = −2f(Q)

n∑

l=1

Wlhn−l(P ) ,

(δ2 − (nδ + iP )2)ηn(P ) = 4δ

n∑

l=1

Wlhn−l(P ) (3.7)

where

hn(P ) = ηn(P ) +

∞∫

0

dQµn(Q,P ) , (3.8)

f(Q) =
2Q2

π(δ2 +Q2)
(3.9)

and the coefficients Wn can be read off the generating function W (t) given in (2.23), (2.24).

Note that while a particular renormalization scheme was used to obtain (3.3) the leading

order equations (3.7) are scheme independent.

The above equations look most compact when written in terms of generating functions

µ(t, P,Q) =

∞∑

n=0

µn(P,Q)e(nδ+iP )t ,

η(t, P ) =
∞∑

n=1

ηn(P )e(nδ+iP )t

h(t, P ) =
∞∑

n=0

hn(P )e(nδ+iP )t = η(t, P ) +

∞∫

0

dQµ(t, P,Q) . (3.10)

Identifying as before the parameter t with the target space time (the zero mode of X0)

we can think of these generating functions as time-dependent coupling constants. Equa-
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tions (3.7) read

− (Q2 + ∂2
t )µ(t, P,Q) = 2f(Q)W (t)h(t, P ) ,

(∂2
t − δ2)η(t, P ) = −4δW (t)h(t, P ) . (3.11)

Assuming that for t sufficiently small: t ≪ δ−1 the series expansions (3.10) converge

the renormalization conditions (3.4) imply the initial conditions

lim
t→−∞

µ(t, P,Q) = eiP tξ0δ(P −Q)

lim
t→−∞

η±(t, P ) = 0 (3.12)

that means that the wave functions for operators (3.6) in the infinite past look like

ξ0e
iP tΨ|P |(φ

op
0 ) .

The conditions (3.12) are to be used as initial conditions for solving the differential equa-

tions (3.11).

Note that unlike the mode equations (3.7) the continuous equations (3.11) do not carry

any reference to the initial condition and thus should be regarded as more fundamental.

These equations are the direct analogue of the on-shell condition (1.16). Note also their

similarity to (1.15).

3.2 Solutions asymptoting to plane waves in the far past

We would like to find an explicit solution to equations (3.7) with boundary conditions (3.4)

or equivalently (3.11), (3.12). We will be using both forms of equations interchangeably.

With the given boundary conditions (3.4) we can rewrite the first equation in (3.7) as

µn(P,Q) = − 2f(Q)

(Q2 + (nδ + iP )2)

n∑

l=1

Wlhn−l(P ) + ξ0δ(P −Q)δn,0 . (3.13)

Introducing

ξn(P ) ≡
∞∫

0

dQµn(P,Q) (3.14)

we obtain by integrating (3.13) over Q

(δ(n + 1) + iP )ξn(P ) = −2

n∑

l=1

Wlhn−l(P ) + δn,0ξ0(δ + iP ) . (3.15)

The second equation in (3.7) can be rewritten as

(δ(n + 1) + iP )(δ(n − 1) + iP )ηn(P ) = −4δ
n∑

l=1

Wlhn−l(P ) (3.16)

Taking an appropriate linear combination of the last two equations we obtain

(δ(n − 1) + iP )hn(P ) = −2
n∑

l=1

Wlhn−l(P ) + ξ0(−δ + iP )δn,0 (3.17)
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that is an equation on the modes hn(P ). We proceed by solving first this equation and

then substituting the solution into (3.13), (3.16) and their continuous counterparts (3.11).

Switching to the generating functions we rewrite (3.17) as

(∂t − δ)h(t, P ) = −2W (t)h(t, P ) + ξ0(−δ + iP )eiP t . (3.18)

It is straightforward to find the solution to this equation

h(t, P ) = ξ0

(
2W 2(t)

δ2ip(1 + ip)
− 2W (t)

δip
+ 1

)
eiP t . (3.19)

The corresponding modes hn(P ) can be plugged into (3.13), (3.16) to obtain series expan-

sions for µ(t, P,Q) and η(t, P ) in the variable x = νeδt. One obtains

µ(t, P,Q) = ξ0δ(Q − |P |) + i
f(Q)

Q
D̂p(x)[Φ(−x, 1, 1 + i(p − q)) − Φ(−x, 1, 1 − i(p− q))] ,

η(t, P ) = 2D̂p(x)[Φ(−x, 1, 2 + ip) − Φ(−x, 1, ip)] (3.20)

where D̂p(x) is a differential operator

D̂p(x) = x+
2x2

ip

d

dx
+

x3

ip(1 + ip)

d2

dx2
(3.21)

and Φ(z, s, v) stands for the Lerch phi-function (see e.g. [18] section 9.55). The last one is

defined in the region |z| < 1 and for v 6= 0,−1,−2, . . . by a power series expansion

Φ(z, s, v) =

∞∑

n=0

zn

(n + v)s
(3.22)

and is analytically extended to the complex plane with a branch cut going over the real

line from z = 1 to z = +∞. For s = 1, which is the case at hand, the Lerch phi function

can be expressed via the hypergeometric 2F1 function as

Φ(z, 1, v) =
2F1(1, v, 1 + v; z)

v
.

For future reference we record here the identity

Φ(z, 1, v) =
π

sin(πv)
(−z)−v + z−1Φ(z−1, 1, 1 − v) (3.23)

which can be used to obtain the asymptotic expansion near z = ∞.

We can thus conclude from (3.20), (3.21) that although the perturbation series for

the time-dependent couplings µ(t, P,Q) and η(t, P ) is initially set up for sufficiently large

and negative values of t, more precisely for t < −δ−1 ln ν, it can be extended via analytic

continuation in the variable x to all values of t. In particular one can study the t → +∞
asymptotic.

Although the above representation of solutions via Lerch phi-function is important

in establishing its convergence properties in practice we will find it more useful to work
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with their spectral representations. With the function h(t, P ) given explicitly in (3.19)

equations (3.11) take the form of oscillator equations with a driving force. They are solved

by passing to the Fourier transforms. Taking into account the initial conditions (3.12) we

obtain

µ(t, P,Q) = eiP tξ0δ(|P | −Q) + f(Q)ξ0

+∞∫

−∞

dω e−iωt dP (ω)

(ω + iǫ)2 −Q2
,

η(t, P ) = 2ξ0δ

+∞∫

−∞

dω e−iωt dP (ω)

δ2 + ω2
(3.24)

where

dP (ω) =
2ω(1 + iω/δ)

δp(1 + ip)
Ŵ (ω + P ) (3.25)

and

Ŵ (ω) =
iν−iω/δ

2 sinh[π(ω + iǫ)/δ]
(3.26)

is the Fourier transform of W (t).

Note that the corresponding operators ΦP (ν) defined in (3.6) satisfy the following

hermitean conjugation rule

ΦP (ν)† = Φ−P (ν) . (3.27)

3.3 Zero momentum solutions

The case P = 0 needs special care. One notices that solutions (3.24) do not have a P → 0

limit unless the normalization factor ξ0 = ξ0(P ) vanishes at least as fast as P . We will

see in the next section that a natural normalization factor for our solution is such that

it vanishes only as |P |1/2 that does not compensate the blow up of the spectral function

dP (ω) in the P → 0 limit. The physical reason for this apparent singularity is that at

P = 0 the RG equations for the coupling constants u(t), λ(q, t) are no longer independent

from the η(t), µ(t,Q) variables.

One can find two distinct solutions at zero momentum by taking limits of suitable

linear combinations of solutions (3.24). We first consider a solution δ(ν) defined as

δ(ν) ≡ lim
P→0

PΦP (ν) (3.28)

where we took the normalization factor ξ0 to be identically one. The corresponding coupling

constants are

µδν(t,Q) = f(Q)

+∞∫

−∞

dω̃ e−iω̃δt dδν(ω̃)

[(ω̃ + iǫ)2 − q2]
,

ηδν(t) = 2δ

+∞∫

−∞

dω̃ e−iω̃δt dδν(ω̃)

(1 + ω̃2)
(3.29)
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where ω̃ = ω/δ and

dδν(ω̃) = 2ω̃(1 + iω̃)Ŵ (δω̃) . (3.30)

It is straightforward to check that this solution describes the marginal operator correspond-

ing to variation of the bare coupling constant ν. One has

µδν(t,Q) = 2iν
∂

∂ν
λ(Q, t) , ηδν(t) = 2iν

∂

∂ν
U(t) (3.31)

where λ(Q, t) and U(t) were found in [2]. The solution δ(ν) asymptotes to zero at t→ −∞:

lim
t→−∞

µδν(t,Q) = 0 , lim
t→−∞

ηδν(t) = 0 . (3.32)

The existence of such a solution means that one cannot fix a unique solution to equa-

tions (3.11) by fixing its leading asymptotic at t → −∞. In order to fix a solution uniquely

one should also fix the first subleading terms in the series expansion in eδt for t ≪ 0. It

suffices to fix the coefficient η1 for that purpose.

Another zero momentum solution which we denote Φ0(ν) corresponds to a perturbation

at t→ −∞ by a cosmological constant operator Φδ
0. It can be obtained as a limit

Φ0(ν) ≡ lim
P→0

1

2
(ΦP (ν) + Φ−P (ν)) . (3.33)

where the normalization factor ξ0 is again chosen to be identically one. The coupling

constants corresponding to (3.33) read

µ0(t,Q) = δ(Q) +
f(Q)

δ

+∞∫

−∞

dω̃ e−iω̃δt d0(ω̃)

[(ω̃ + iǫ)2 − q2]
, (3.34)

η0(t) = 2

+∞∫

−∞

dω̃ e−iω̃δt d0(ω̃)

(1 + ω̃2)
(3.35)

where

d0(ω̃) = lim
P→0

1

2
(dP (ω̃) + d−P (ω̃)) = −i(1 + ln(ν))dδν(ω̃) + ω̃(ω̃ − i)π

ν−iω̃ cosh(πω̃)

sinh2[π(ω̃ + iǫ)]
.

(3.36)

This solution can be simplified by subtracting a suitable amount of the previously

found solution δ(ν) so that the spectral function d0(ω̃) is replaced by

d′0(ω̃) ≡ ω̃(ω̃ − i)π
ν−iω̃ cosh(πω̃)

sinh2[π(ω̃ + iǫ)]
. (3.37)

We denote the corresponding solution by Φ′
0(ν).
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4. The “in” and “out” states

4.1 Conformal primaries at the infrared fixed point

The t → −∞ limit of the time-dependent BCFT (2.12) is the unperturbed FZZT theory

characterized by δ. The incoming scattering states are the states corresponding to the

boundary operators eiPX0Φδ
|P |. As in the previous section we consider momenta P = O(δ).

It was shown in [2] that the t → ∞ limit can be described by the δ∗ = −δ FZZT

boundary condition perturbed by a marginal oscillating term (2.25) interpreted as radia-

tion. It is natural then to define the out-states as operators of the form eiPX0Φ−δ
|P |. Since

the time-dependent theory (2.12) is constructed as a perturbation in the Fock space (2.7)

of the theory labeled by δ one needs to construct in that Fock space the operators Φ−δ
|P | out

of the operators Φδ
|P |, Φδ

ϑ. This problem is most elegantly solved by using the boundary

RG flow generated by the relevant operator Φδ
ϑ. This RG flow was studied in [1, 2]. The

renormalized boundary action containing all near-marginal couplings generated by the flow

has the form

Sren
Bd =

∫

R

dx

(
uǫ−δ2

Φδ
ϑ(x) +

∞∫

0

dP λ(P )ǫP
2

Φδ
P (x)

)
(4.1)

where ǫ is the regularization scale. The RG equations computed in the δ ≪ 1 conformal

perturbation theory read [2]

ǫ
du

dǫ
= δ2u− 2δw2 ,

ǫ
dλ(P )

dǫ
= −P 2λ(P ) − 2P 2

π(δ2 + P 2)
w2 (4.2)

where

w = u+

∞∫

0

dP λ(P ) .

It was shown in [2] that the infrared fixed point of the above equation

u∗ = 2δ , λ∗(P ) = − 2δ2

π(δ2 + P 2)

corresponds to the δ∗ = −δ FZZT conformal boundary condition.

In general if beta functions have the form:

βj = δjλj −
∑

kl

Cj
klλ

kλl (4.3)

and λj = λj
∗ is an IR fixed point, then

Dj
i ≡ (∂iβ

j)(λ∗) (4.4)

is the matrix of anomalous dimensions at the IR fixed point. Its spectrum of eigenvalues

gives the IR fixed point anomalous dimensions and its eigenvectors the expressions for
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IR fixed point conformal primaries via the UV ones4 (which is sensible in the small δ

expansion).

For the model at hand we find using (4.2) that the operator playing the role of the

matrix Dj
i above acts as

D̂Φδ
ϑ = δ2Φδ

ϑ − 2δ

( ∞∫

0

dQf(Q)Φδ
Q + 2δΦδ

ϑ

)

D̂Φδ
P = −P 2Φδ

P − 2δ

( ∞∫

0

dQf(Q)Φδ
Q + 2δΦδ

ϑ

)
(4.5)

where f(Q) is given in (3.9).

To find the eigenvectors of operator D̂ we write an ansatz

Φ∗
P = Φδ

ϑ +

∞∫

0

dQKP (Q)Φδ
Q . (4.6)

The eigenvector equation

D̂Φ∗
P = −P 2 Φ∗

P (4.7)

implies

KP (Q)(Q2 − P 2) = −δ
2
(p2 + 1)f(Q) ,

1 +

∞∫

0

dQKP (Q) =
1

4
(p2 + 1) . (4.8)

We find a distributional solution

KP (Q) = gpδ(P −Q) − δ(p2 + 1)f(P )

2(Q2 − P 2 + iǫP )
(4.9)

The coefficient gp is determined by substituting (4.9) into the second equation in (4.8).

We obtain

gp =
1

4
(p− i)2 . (4.10)

We also checked that there are no solutions to the eigenvalue equation (4.7) for imagi-

nary P which is consistent with the fact that in the IR fixed point there are no normalizable

relevant operators.

We can check that the wavefunctions of operators (4.9), (4.10) have the correct asymp-

totics at φ0 → −∞. Assuming the φ0 → −∞ limit can be taken inside the integral over P

in (4.6) using (2.11) and taking the appropriate residues we obtain the following asymptotic

Ψϑ(φ0) +

∞∫

0

dQKp(Q)ΨQ(φ0) ∼ 1

4
[(p + i)2Cδ(P )eiPφ0 + (p− i)2Cδ(−P )e−iPφ0 ]

= (p2 + 1)
1

4
[C−δ(P )eiPφ0 + C−δ(−P )e−iPφ0 ] (4.11)

4Of course this can be used to obtain only a subset of the primaries which are tangential to the RG flow

in the vicinity of the IR fixed point
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This means that to the leading order in δ we can identify

Φ−δ
P =

4

p2 + 1
Φ∗

P =
4

p2 + 1
Φδ

ϑ +

(
p− i

p+ i

)
Φδ
|P | − 2δ

∞∫

0

dQ
f(Q)

(Q2 − P 2 + iǫP )
Φδ

Q . (4.12)

Note the following simple properties

Φ±δ
P = Φ±δ

−P = (Φ±δ
P )† .

4.2 Conserved inner product and normalizations

An important property of the time evolution equations (3.11) is the existence of a conserved

Klein-Gordon type inner product. For any two solutions (µi, ηi), i = 1, 2 we define the inner

product to be

〈(µ1, η1), (µ2, η2)〉KG =
i

2

∞∫

0

dQCδ(Q)Cδ(−Q)(µ∗2∂tµ1 − µ1∂tµ
∗
2) +

i

2
dδ(η

∗
2∂tη1 − η1∂tη

∗
2)

=
iπµr

2δ

[ ∞∫

0

dQ
πδ(δ2+Q2)

Q2
(µ∗2∂tµ1 − µ1∂tµ

∗
2) + (η∗2∂tη1 − η1∂tη

∗
2)

]
.

(4.13)

It is straightforward to check using (3.11) that this inner product is t-independent. The

weight function under the integral and the coefficient at the term with η1,2 can be under-

stood as a consequence of the two-point function normalizations (2.13), (2.14). We will

use the same notation 〈ΦP1
(ν),ΦP2

(ν)〉KG to define the inner product for operators (3.6)

corresponding to solutions of (3.11), (3.12).

The operators eiPX0Φδ
|P | are asymptotic solutions to (3.11) in the far past. Since the

inner product (4.13) is conserved it can be evaluated on such operators. We choose a basis

of normalized positive frequency “in” states to be given by operators

Oin
P =

1

|P |1/2Cδ(P )
Φδ

P e
−iPX0 , P > 0 . (4.14)

The hermitean conjugated operators form the basis of negative frequency “in” states:

Oin∗
P =

1

|P |1/2Cδ(−P )
Φδ

P e
iPX0 , P > 0 . (4.15)

These operators satisfy the orthogonality conditions

〈Oin
P1
,Oin

P2
〉KG = δ(P1−P2) , 〈Oin∗

P1
,Oin∗

P2
〉KG = −δ(P1−P2) , 〈Oin∗

P1
,Oin

P2
〉KG = 0 . (4.16)

We are next going to show that operators Φ−δ
|P |e

iPX0 are asymptotic solutions to (3.11)

at t → +∞. Substituting the asymptotic value δ = limt→+∞W (t) for W (t) we
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rewrite (3.11) in the following form

∂2
t µ(t, P,Q) = D̂µ(t, P,Q) ≡ −Q2µ(t, P,Q) − 2δf(Q)(η(t, P ) +

∞∫

0

dQ′µ(t, P,Q′)) ,

∂2
t η(t, P ) = D̂η(t, P ) ≡ δ2η(t, P ) − 4δf(Q)(η(t, P ) +

∞∫

0

dQ′µ(t, P,Q′)) . (4.17)

The operator D̂ defined on the right hand sides can be recognized as the dual action on

the coupling constants of the dilatation operator (4.5). Thus by (4.7), (4.12) the operators

Φ−δ
|P |e

iPX0 are indeed solutions of the wave equation (3.11) at t→ +∞.

We define a basis of positive frequency “out” states

Oout
P =

(
p− i

p+ i

)
1

|P |1/2Cδ(P )
Φ−δ

P e−iPX0 , P > 0 (4.18)

and a hermitean conjugated basis Oout∗
P of negative frequency states. The normalization

factor is chosen so that

〈Oout
P1
,Oout

P2
〉KG = δ(P1 − P2) , 〈Oout∗

P1
,Oout∗

P2
〉KG = −δ(P1 − P2) ,

〈Oout∗
P1

,Oout
P2

〉KG = 0 . (4.19)

This is checked by direct computation substituting the coefficients from (4.12) into (4.13).

The particular choice of phase in (4.18) is done for convenience.

4.3 The t→ +∞ asymptotics

One can compute the t → +∞ asymptotics of the time-dependent vertex operators (3.6).

What we formally mean by taking such a limit is taking first the limit of the analytically

continued solutions to the wave equations (3.20). The asymptotic coupling constants pro-

portional to eiQt can then be coupled to operators eiQX0Φδ
Q′ giving thus the operator-valued

limit5. The desired asymptotic can be obtained either by using the appropriate asymptotic

expansion for the Lerch phi-function (hypergeometric function) or by taking residues in

the complex ω-plane in the spectral formulas (3.24). One obtains

µ(t, P,Q) ∼
t→∞

eiP tξ0

[
δ(P −Q) − 2f(Q)δ

(Q2 − P 2 + iǫP )

(
p+ i

p− i

)]
+ (4.20)

+
ξ0πf(Q)

δp(1 + ip)

[
e−iQt (1 + iq)ν−i(q+p)

sinh[π(q + p− iǫ)]
+ eiQt (1 − iq)ν−i(p−q)

sinh[π(−q + p− iǫ)]

]
.

Note that when working with the first spectral expression (3.24) we have to take into

account two iǫ contour prescriptions: one explicitly present in (3.24) and another one in

the Fourier transform of W (3.26). The t → ∞ limit depends on the difference of two

5Putting it a bit differently (c.f. the discussion in [2]) one can speak of a limit for the wave functions

obtained as an overlap of the states corresponding to (3.6) with the states 〈φop
0 | ⊗ 〈t| as in (2.10) and then

invoke the state-operator correspondence.
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epsilons. The choice of the sign is however insignificant as the complete expression is

non-singular at p = q. The particular choice of sign was made for an easy comparison

with (4.12). Similarly we obtain

η(t, P ) ∼
t→∞

4

(p− i)2
eiP t . (4.21)

Comparing (3.12) with (4.14) we can fix the normalization constant

ξ0 = ξ0(P ) =
1

|P |1/2Cδ(−P )
(4.22)

so that in the far past the operator Φ−P (ν), P > 0 approaches the normalized positive

frequency in operator Oin
P :

Φ−P (ν) ∼
t→−∞

Oin
P , P > 0 . (4.23)

From now on we will assume that P > 0 and will work with the vertex operator

Φ−P (ν). Combining (4.20) and (4.21) together and taking into account (4.12), (4.18) we

obtain

Φ−P (ν) ∼
t→∞

Oout
P +

ξ0(−P )π

δp(1 − ip)
× (4.24)

×
∞∫

0

dQf(Q)Φδ
Q

[
e−iQX0

(1 + iq)νi(p−q)

sinh[π(p − q + iǫ)]
+ eiQX0

(1 − iq)νi(p+q)

sinh[π(p + q + iǫ)]

]
.

For the zero momentum solutions δ(ν) and Φ0(ν) one finds the following asymptotics

δ(ν) ∼
t→∞

∞∫

0

dQ
2q2Φδ

Q

sinh(πq)

[
e−iQX0ν−iq

1 − iq
− eiQX0νiq

1 + iq

]
, (4.25)

Φ0(ν) ∼
t→∞

−Φ−δ
0 (4.26)

−2π

δ

∞∫

0

dQq2 cosh(πq)Φδ
Q

[
e−iQX0ν−iq

(1 − iq) sinh2[π(q + iǫ)]
+

eiQX0νiq

(1 + iq) sinh2[π(q − iǫ)]

]
.

5. Solutions asymptoting to positive frequency out states

The t→ ±∞ asymptotics of the zero mode δ(ν) present us the following apparent problem.

On the one hand the t → +∞ asymptotic given in (4.25) means that the asymptotic

overlaps

〈Oout
Q , δ(ν)〉KG

are nonvanishing. On the other hand given a solution Ψ−P (ν) that at t→ +∞ approaches

Oout
P , its overlap with δ(ν) would be zero provided the t → −∞ asymptotic of Ψ−P (ν) is

bounded. This is because the δ(ν) solution asymptotes to zero at t→ −∞. We are forced

to conclude that either the solutions approaching Oout
P in the infinite future do not exist
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at all or, if they exist, they blow up at t→ −∞. We will show in this section that it is the

second option that is realized.

A solution ΨP (ν) that asymptotically approaches Oout∗
P can be constructed as follows.

We start by looking at a solution at large positive values of t in the form of series expansions

µ̃(t,Q, P ) =
∞∑

n=0

µ̃ne
(iP−nδ)t , η̃(t, P ) =

∞∑

n=0

η̃ne
(iP−nδ)t (5.1)

with

µ̃0 =
4h̃0

p2 + 1
KP (Q) = h̃0

[(
p− i

p+ i

)
δ(Q− |P |) − 2δf(Q)

Q2 − P 2 + iǫP

]
, (5.2)

η̃0 =
4h̃0

p2 + 1
(5.3)

where h̃0 is a normalization factor and P > 0. The coefficients µ̃0, η̃0 above are chosen so

that

ΨP (ν) ≡ η̃(t, P )Φδ
ϑ +

+∞∫

0

dQ µ̃(t,Q, P )Φδ
Q ∼

t→∞
h̃0Φ

−δ
|P |e

iP t . (5.4)

Choosing the normalization factor

h̃0 = h̃0(P ) =

(
p+ i

p− i

)
1

|P |1/2Cδ(−P )
(5.5)

we obtain

ΨP (ν) ∼
t→∞

Oout∗
P , Ψ−P (ν) ∼

t→∞
Oout

P . (5.6)

Substituting the expansions (5.1) into the wave equations (3.11) we obtain the following

set of equations

[Q2 + (iP − nδ)2]µ̃n = −2f(Q)

n∑

l=0

W̃lh̃n−l ,

[(iP − nδ)2 − δ2]η̃n = −4δ

n∑

l=0

W̃lh̃n−l (5.7)

where

h̃n = ξ̃n + η̃n ≡
+∞∫

0

dQµn(Q) + η̃n (5.8)

and W̃l = δ(−ν)−l are coefficients in the expansion

W (t) =
∞∑

l=0

W̃le
−nδt .

We solve the system (5.7) by similar steps to those we did in section 3.2 solving (3.7).

The first equation in (5.7) together with (5.2) imply

µ̃n = − 2f(Q)(W · h)n
Q2 + (i(P − iǫ) − nδ)2

+ δn,0h̃0

(
p− i

p+ i

)
δ(Q− |P |) (5.9)
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where for brevity we used the notation

(W · h)n ≡
n∑

l=0

W̃lh̃n−l .

Integrating the last equation over Q we obtain

(δ(n + 1) − iP )ξ̃n = −2(W · h)n − iδn,0h̃0
(p + i)2

p− i
δ . (5.10)

Taking the appropriate linear combinations of equations (5.7), (5.10) we obtain

µ̃n =
δf(Q)h̃n(n− 1 + ip)

Q2 + (iP + ǫ− nδ)2
+ δn,0

[
µ̃0 +

δf(Q)h̃0(1 − ip)

Q2 − (iP + ǫ)2

]
,

η̃n =
2h̃n

n+ 1 − ip
− 2i

p− i
h̃0δn,0 , (5.11)

(iP + δ(1 − n))h̃n = 2(W · h)n + iδn,0h̃0(p+ i)δ . (5.12)

The last equation is solved in terms of hypergeometric series

h̃(t) = h̃0

[(
p+ i

p− i

)
− 2i

p− i
2F1(1,−1 − ip, 2 − ip;−x̃)

]
eiP t . (5.13)

where x̃ = ν−1e−δt. Substituting the coefficients h̃n into (5.11) we obtain the following

expressions for µ̃(t,Q, P ), η̃(t, P ) in terms of Lerch phi-functions

µ̃(t,Q, P ) = δ(Q− |P |)h̃0

(
p− i

p+ i

)
eiP t + h̃0

f(Q)

Q
ip(p+ i)eiP t

[
−Φ(−x̃, 1, i(q − p))

q(q + i)

−2i

q
Φ(−x̃, 1,−ip) +

Φ(−x̃, 1,−i(q + p))

q(q − i)
+

2iq

1 + q2
Φ(−x̃, 1, 1 − ip)

]
, (5.14)

η̃(t, P ) = 4h̃0p(p + i)eiP t

[
1

2
Φ(−x̃, 2, 1 − ip) − Φ(−x̃, 1,−ip) +

+
3

4
Φ(−x̃, 1, 1 − ip) +

1

4
Φ(−x̃, 1,−1 − ip)

]
. (5.15)

An asymptotic expansion of ΨP (ν) in the t → −∞ region can be obtained from ex-

pressions (5.14), (5.15) using relation (3.23) for the functions Φ(−x̃, 1, v) and the following

integral expression

Φ(−x̃, 2, 1 − ip) =
1

2i

+∞∫

−∞

dω
ν−iωe−iωδt

(ω − p− i)2 sinh[π(ω + iǫ)]
. (5.16)

The leading terms in the asymptotic read

µ̃(t,Q, P ) ∼
t→−∞

h̃0

(
p− i

p+ i

)
δ(Q− |P |)eiP t −

−h̃0πp(p+ i)
f(Q)

δq2

[
νi(q−p)eiQt

(q + i) sinh[π(q − p)]
+

ν−i(q+p)e−iQt

(q − i) sinh[π(q + p)]

]
+

−2
f(Q)

δq2
α(p) . (5.17)

η̃(t, P ) ∼
t→−∞

α(p)(ν−1e−δt + 4 + O(eδt)) (5.18)
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where

α(p) = h̃0(P )
πp(1 − ip)ν−ip

sinh(πp)
= −i

(
p+ i

p− i

) |p|3/2ν−ip

(µrδ)1/2 sinh(πp)
. (5.19)

The first term in (5.18) is exponentially divergent in the t → −∞ limit and therefore has

a nonzero overlap with the δ(ν) solution. This overlap matches with the one that can be

computed from the expansions in the t→ +∞ region using (5.18).

6. Bogolyubov transformations

To obtain the Bogolyubov coefficients we start by recasting asymptotics 4.24 into a form

Φ−P (ν) ∼
t→∞

∞∫

0

dQ(βP (Q)Oout∗
Q + αP (Q)Oout

Q ) (6.1)

where βP (Q) and αP (Q) are Bogolyubov coefficients. Using the completeness of the out-

basis (4.18) and the inner products (4.19) we can evaluate the Bogolyubov coefficients at

hand via the asymptotics of the inner-products

αP (Q) ∼
t→∞

〈Φ−P (ν),Oout
Q 〉KG , βP (Q) ∼

t→∞
−〈Φ−P (ν),Oout∗

Q 〉KG . (6.2)

It is technically simpler to compute overlaps of Oout
Q with the asymptotic (4.24) drop-

ping any additional terms exponentially suppressed as t → ∞. After the substitution

of (4.24), (4.18) into (4.13) the computation reduces to finding the asymptotic value of the

following integral

I ≡
+∞∫

−∞

ds
s2(q − s)

(1 − is)(s2 − q2 ± iǫ)

e−i(s+q)δtνi(p−s)

sinh[π(s− p− iǫ′)]
(6.3)

where +iǫ occurs in the computation of αP (Q) and −iǫ occurs for βP (Q). For t → +∞
this integral can be evaluated by taking residues in the region Ims ≤ 0. Contributions from

the residues located away from the real line are suppressed as exp(−nδt) and should be

dropped. Evaluating the residues on the real line eventually yields the following expressions

for the Bogolyubov coefficients

αP (Q) = δ(P −Q) − 2|q|3/2

δ|p|1/2(p2 + 1)

(
q + i

q − i

)
νi(p−q)

sinh[π(p − q + iǫ)]
,

βP (Q) =
2|q|3/2

δ|p|1/2(p2 + 1)

(
q − i

q + i

)
νi(p+q)

sinh[π(p + q + iǫ)]
. (6.4)

Conservation of the inner product (4.13) together with asymptotics (4.23), (6.1) and

formula (4.16) imply the following pair of relations for Bogolyubov coefficients

∞∫

0

dQ[αP1
(Q)α∗

P2
(Q) − βP1

(Q)β∗P2
(Q)] = δ(P1 − P2) ,

∞∫

0

dQ[αP1
(Q)βP2

(Q) − αP2
(Q)βP1

(Q)] = 0 . (6.5)
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These relations can be checked for the coefficients (6.4) by direct computation. The details

of this computation are relegated to appendix A.

A direct computation leads to another pair of relations

∞∫

0

dP [α∗
P (Q1)αP (Q2) − βP (Q1)β

∗
P (Q2)] = δ(Q1 −Q2) + d(Q1, Q2) ,

∞∫

0

dP [α∗
P (Q1)βP (Q2) − α∗

P (Q2)βP (Q1)] = −d(Q1,−Q2) (6.6)

where an explicit expression for d(Q1, Q2) is given in (A.6). This pair of relations deviates

from the ones one could have expected naively - the ones in which the function d(Q1, Q2) is

identically zero. This signals incompleteness of the set of incoming solutions Φ−P (ν). Let

us recall the logic of derivation of the standard relations with vanishing d(Q1, Q2). The

inner products (6.2) and the completeness of the asymptotic solutions Oout
P imply that the

solution

χQ(ν) ≡
∞∫

0

dP [α∗
P (Q)Φ−P (ν) − βP (Q)ΦP (ν)] (6.7)

asymptotically at t → +∞ has the same overlaps with all Φ−P (ν) as Oout
Q . If the set

of solutions Φ−P (Q) was complete we would conclude that the solution χQ(ν) asymp-

totically approaches Oout
Q at t → +∞ (and thus should be identified with the so-

lution Ψ−P (ν) considered before). The inner product conservation would then imply

〈χQ1
(ν), χQ2

(ν)〉KG = δ(Q1 − Q2), 〈χ∗
Q1

(ν), χQ2
(ν)〉KG = 0 which in its turn would im-

ply the standard relations (6.6) with vanishing d(Q1, Q2). We do know however from the

considerations in section 5 that the set of solutions Φ−P (Q) is incomplete due to the ex-

istence of solutions blowing up in the infinite past. In that section we constructed the

solution Ψ−P (ν) that approaches Oout
P explicitly and saw that its asymptotic in the infinite

past blows up.

The complete asymptotic expansion in the t→ −∞ region obtained using (3.23), (5.16)

together with the asymptotic expansion for χP (ν) in the same region can be used to identify

the Ψ−P (ν) solution with the following linear combination of solutions

Ψ−P (ν) = χP (ν) + α(−p)δ̃(ν) + β(−p)δ(ν) (6.8)

where

δ̃(ν) = Φ′
0(ν) + Φδ

ϑν
−1e−δX0 + Φ−δ

0 , (6.9)

β(p) = −π
δ
α(p) coth(πp) . (6.10)

The above expansion means that in order to obtain a complete set of scattering “out”

states one needs to include, in addition to solutions constructed in section 3, a single

solution δ̃(ν) blowing up in the t→ −∞ limit.

We define two sets of solutions

S in = {ΦP (ν) , P 6= 0; δ(ν); δ̃(ν)} , Sout = {ΨP (ν) , P ∈ R} .
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The inner products between the bases of solutions asymptoting to the “in” and “out”

states are

〈ΦP (ν),ΦQ(ν)〉KG = −sgn(P )δ(P −Q) ,

〈ΨP (ν),ΨQ(ν)〉KG = −sgn(P )δ(P −Q) ,

〈ΦP (ν), δ(ν)〉KG = 〈ΦP (ν), δ̃(ν)〉KG = 0 for P 6= 0

〈δ(ν), δ̃(ν)〉KG = −2πµrδ . (6.11)

The functions α(−p), β(−p) given in (5.19), (6.10) are additional Bogolyubov coefficients.

Substituting the expansion (6.8) into the second identity in (6.11) gives the second pair of

relations for Bogolyubov coefficients (6.6) where the function d(q1, q2) is

d(Q1, Q2) = 〈δ(ν), δ̃(ν)〉KG[α(−q1)β(q2) − α(q2)β(−q1)]

in accordance with (A.6). Thus the extra term on the right hand side of (6.6) indeed

accounts for the blowing up solution δ̃(ν).

The following additional relations can be shown to be true

∞∫

0

dQ [α∗
P (Q)β(q) + β∗P (Q)β(−q)] = 0 ,

∞∫

0

dQ [α∗
P (Q)α(q) + β∗P (Q)α(−q)] = 0 ,

∞∫

0

dQ [α(−q)β(q) − α(q)β(−q)] = (µ̃)−1 . (6.12)

Here and elsewhere µ̃ stands for the combination

µ̃ = 2πµrδ . (6.13)

The expressions for the modes S in in terms of the modes Sout can be found using the

inner products (6.2), (6.11) and formula (6.8). We derive

Φ−P (ν) =

∞∫

0

dQ(βP (Q)ΨQ(ν) + αP (Q)Ψ−Q(ν)) ,

δ(ν) = µ̃

∞∫

0

dP [α(−p)ΨP (ν) − α(p)Ψ−P (ν)] ,

δ̃(ν) = µ̃

∞∫

0

dP [β(p)Ψ−P (ν) − β(−p)ΨP (ν)] . (6.14)

The expressions (6.7), (6.8), (6.14) define (inverse to each other) Bogolyubov trans-

formations between the two sets of modes: S in and Sout. The corresponding Bogolyubov
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coefficients are all expressed via the functions αP (Q), βP (Q), α(p), β(q), and satisfy the

standard unitarity relations.

The inner product matrix for the basis S in can be completely diagonalized by intro-

ducing

δ+ = (δ̃(ν) + δ(ν))(2µ̃)−1/2 , δ− = (δ̃(ν) − δ(ν))(2µ̃)−1/2 . (6.15)

The modes δ+, δ− are complex conjugates of each other. One has

〈δ+, δ+〉KG = −1 , 〈δ−, δ−〉KG = 1 , 〈δ+, δ−〉KG = 0 . (6.16)

Let us introduce a linear operator A that corresponds to a block of the Bogolyubov

transformation (6.8), (6.14) that maps the positive frequency modes Ψ−P (ν) , P ≥ 0 to

the modes Φ−P (ν) , P > 0 , δ−. It can be written as a block matrix

A =

[
αP (Q)

α(q) + β(q)

]
. (6.17)

Here Q is a column’s label. Similarly the block mapping the negative frequency out states

Ψ−P (ν), P ≤ 0 to the modes Φ−P (ν) , P > 0 , δ− is given by a block matrix

B =

[
βP (Q)

α(−q) + β(−q)

]
. (6.18)

In terms of the operators A, B the first relation in (6.6) can be rewritten as

A†A = I +BB† . (6.19)

This implies that the operator A has the bounded inverse (e.g. see [19] chapter 2, section

4.2). The operator A−1 has a block structure

A−1 =

[
γQ(P ) γ(q)

]
(6.20)

where rows are labeled by Q . In terms of the block entries we obtain the following set of

relations which will be used later
∞∫

0

dP γQ1
(P )αP (Q2) = δ(Q1 −Q2) − γ(q1)(α(q2) + β(q2)) ,

∞∫

0

dQαP1
(Q)γQ(P2) = δ(P1 − P2) ,

∞∫

0

dQαP (Q)γ(q) = 0 ,

∞∫

0

dQ (α(q) + β(q))γQ(P ) = 0 ,

∞∫

0

dQ (α(q) + β(q))γ(q) = 1 . (6.21)
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7. Secondary quantization

Let us discuss now what our findings imply for a secondary quantization of the wave

equations (3.11). A quantum field Φ̂ can be decomposed in two ways as

Φ̂ =

∞∫

0

dP [Φ−P (ν)ain
P + ΦP (ν)ain†

P ] + µ̃−1/2(q̂δ̃(ν) − ip̂δ(ν)) ,

Φ̂ =

∞∫

0

dP [Ψ−P (ν)aout
P + ΨP (ν)aout†

P ] (7.1)

where the creation and annihilation operators satisfy the canonical commutation relations

[ain
P1
, ain†

P2
] = δ(P1 − P2) , [ain

P1
, ain

P2
] = 0

[aout
P1
, aout†

P2
] = δ(P1 − P2) , [aout

P1
, aout

P2
] = 0 . (7.2)

The operator modes q̂ and p̂ are hermitean and the commutation relations involving these

operators can be easily determined. Recall that the symplectic form on the space of classical

solutions can be defined as

Ω(Φ1,Φ2) = 〈Φ1,Φ
∗
2〉KG . (7.3)

Following the rules of second quantization with this symplectic form we obtain

from (6.11), (6.8)

[q̂, p̂] = i , [p̂, ain
P ] = 0 , [q̂, ain

P ] = 0 . (7.4)

Substituting (6.8) into the second equation in (7.1) we obtain

ain
P =

∞∫

ǫ

dQ [α∗
P (Q)aout

Q − β∗P (Q)aout†
Q ] ,

p̂ = iµ̃1/2

∞∫

0

dP [β(−p)aout
P + β(p)aout†

P ] ,

q̂ = µ̃1/2

∞∫

0

dP [α(−p)aout
P + α(p)aout†

P ] . (7.5)

The inverse set of linear relations is found by substituting (6.14) into the first equation

in (7.1). We have

aout
P =

∞∫

0

dQ [αQ(P )ain
Q + β∗Q(P )ain†

Q ] + µ̃1/2(β(p)q̂ + iα(p)p̂) . (7.6)

Note that the modes ain
P , aout

P each describes a harmonic oscillator with frequency P

in the respective asymptotic regions. It is straightforward to define the “out” vacuum

|0〉out as a state annihilated by all aout
P operators. To define the “in” vacuum |0〉in it is
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natural to require ain
P |0〉in = 0 for all P > 0. In addition to this we need to specify how the

operators q̂, p̂ act on |0〉in. The modes q̂, p̂ are canonical variables asymptotically describing

a quantized upside-down harmonic oscillator. The last one is classically described by the

equation

∂2
t η = δ2η (7.7)

which is the asymptotic equation of motion for the mode η in the infinite past. The

corresponding quantum Hamiltonian is unbounded and there is no natural choice of the

incoming state for this system. We will discuss the physics of this mode further in section 10.

For now we record that there is an essential ambiguity in defining |0〉in.

However it is not hard to see that there is a large class of pair creation amplitudes

independent of the choice of initial wavefunction for modes q̂, p̂. Apply both sides of the

first equation in (7.5) to the “in” vacuum. We obtain

∞∫

0

dQα∗
P (Q)aout

Q |0〉in =

∞∫

0

dQβ∗P (Q)aout†
Q |0〉in .

Using this relation and the canonical commutation relations we obtain

∞∫

0

dQ1

∞∫

0

dQ2 α
∗
P1

(Q1)α
∗
P2

(Q2)out〈Q1, Q2|0〉in =

∞∫

0

dQα∗
P1

(Q)β∗P2
(Q) (7.8)

where out〈Q1, Q2| is the bra vector conjugated to6 |Q1, Q2〉out = aout†
Q1

aout†
Q1

|0〉out. For-

mula (7.8) means that a creation amplitude for two “out” particles whose wave functions

are of the form

ψ(Q) =

∞∫

0

dP φ(P )αP (Q) (7.9)

with any sensible weight function φ(P ), are independent of how the action of the modes q̂, p̂

is defined on |0〉in. Such amplitudes are all expressible via the “out” wave functions and the

Bogolyubov coefficients αP (Q) and βP (Q). A natural question arises - how big is the space

of all such functions? This is measured by the dimension of the cokernel of the operator

defined in (7.9). The first relation in (6.21) implies that the cokernel of operator (7.9)

has at most dimension one. Thus almost all pair creation amplitudes are independent of

the details of the initial state of the tachyonic mode η. In the second quantized approach

these amplitudes are expressed via Bogolyubov coefficients (7.8). In the next section we

will show that pair creation amplitudes (7.8) can be obtained by computing an appropriate

string theory two-point function.

6We chose to normalize our particle states so that their inner products involve only appropriate delta

functions. Alternatively one may wish the normalizations to be invariant under the asymptotic Lorentz

transformations. In that case one should include the factors
p

|P | with every creation operator a
in†
P

, a
out†
P

.

All formulas we obtain can be trivially generalized to include such factors.
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8. String theory two point function

As was said in the introduction it is natural to expect that string theory two point functions

in time-dependent backgrounds are related to pair creation amplitudes which are express-

ible via Bogolyubov coefficients (see also [8]). We would like to check this relationship for

the set of amplitudes described in the previous section. We will show that for a properly

defined string two point function the following relation holds

1

2
〈Φ−P1

(ν)Φ−P2
(ν)〉str =

∞∫

0

dQ1

∞∫

0

dQ2 αP1
(Q1)αP2

(Q2)in〈0|Q1, Q2〉out

=

∞∫

0

dQαP1
(Q)βP2

(Q) . (8.1)

Defining a two point amplitude in string theory involves fixing the SL(2,R) modular

symmetry. Fixing the positions of two vertex operators leaves out a subgroup of infinite

volume. Dividing over this infinite volume typically yields a vanishing amplitude. In some

cases a finite quantity can be obtained by cancelling the infinite volume of the modular

group against the infinte factor δ(0) arising from the target space zero mode integration [10,

9]. This cancellation is relatively well understood in noncritical string theory but is also

believed to happen in other models for example for strings propagating in AdS3 [11]. As

there is no general lore we offer only a few comments on this issue which hopefully clarify

the situation to some extent.

While the two infinite factors are in general unrelated, in noncritical string theory

dilatations involve translations of the Liouville field because of the background charge. At

the technical level one derives two point functions in noncritical string theory by starting

with a three point amplitude which is free of divergences and using the ground ring structure

that relates it to two point functions [13, 12]. Breaking of target space translation invariance

is crucial in this approach because the three point function does not have a momentum

conservation delta function. In the example at hand we do not know if there is some

algebraic structure similar to the ground ring so we proceed in a somewhat empirical

fashion. We first investigate the CFT two point function. The formal expression turns

out to be divergent. We investigate the nature of the divergences by regularizing the

amplitude and find that the divergences come from contributions of the on-shell states of

the undeformed theory describing FZZT branes. We then use the results of [12] for string

boundary two point functions for FZZT branes to cancel the aforementioned divergences

against the modular group volume. Having sketched the idea we now give the details.

Using (3.24) we find that the formal expression for the CFT two point function has

the following contributions

〈Φ−P1
(ν),Φ−P2

(ν)〉CFT = C0(P1, P2) + C1(P1, P2) + C1(P2, P1) + Cµ(P1, P2) + Cη(P1, P2)
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where

C0(P1, P2) = ξ1ξ2〈Φδ
|P1|

e−iP1X0,Φδ
|P2|

e−iP2X0〉CFT , (8.2)

C1(P1, P2) = ξ1ξ2

+∞∫

−∞

dω

∞∫

0

dQ
f(Q)d−P2

(ω)

(ω + iǫ)2 −Q2
〈Φδ

|P1|
e−iP1X0 ,Φδ

Qe
−iωX0〉CFT , (8.3)

Cµ(P1, P2) = ξ1ξ2

+∞∫

−∞

dω1

+∞∫

−∞

dω2

∞∫

0

dQ1

∞∫

0

dQ2
f(Q1)f(Q2)d−P1

(ω1)d−P2
(ω2)

[(ω1 + iǫ1)2 −Q2
1][(ω2 + iǫ2)2 −Q2

2]

×〈Φδ
Q1
e−iω1X0 ,Φδ

Q2
e−iω2X0〉CFT , (8.4)

Cη(P1, P2) = 4δ2ξ1ξ2

+∞∫

−∞

dω1

+∞∫

−∞

dω2
d−P1

(ω1)d−P2
(ω2)

(δ2 + ω2
1)(δ

2 + ω2
2)
〈Φδ

ϑe
−iω1X0 ,Φδ

ϑe
−iω2X0〉CFT (8.5)

Here for brevity we denoted the normalization factors as ξ1 = ξ0(−P1), ξ2 = ξ0(−P2)

(see (4.22)). We also dropped the coordinate dependence of the two point functions: the

notation 〈O1,O2〉CFT is used for two point functions on a unit disc with operators O1,O2

inserted at opposite points on the disc boundary.

Except for the last one all of the above four expressions contain divergences. We will

see that these divergences arise from integration over the target space zero modes. The

first expression can be readily computed using (2.13) and

〈e−iX0ω1(x1)e
−iX0ω2(x2)〉CFT = δ(ω1 + ω2)|x1 − x2|−2ω2

1 (8.6)

to obtain

C0(P1, P2) = ξ1ξ2|Cδ(P1)|2δ(|P1| − |P2|)δ(P1 + P2) .

This expression contains δ(0) when P1 and P2 have opposite signs but this is not the case

we are interested in for computing the particle production rate. We assume both P1,2 > 0

and thus can set7 C0(P1, P2) = 0.

To exhibit the nature of divergences in C1(P1, P2) and Cµ(P1, P2) we regularize the

above expressions by inserting an extra exponent e−iσX0 inside the normal product in each

correlator of the form 〈Φδ
Q1
e−iω1X0 ,Φδ

Q2
e−iω2X0〉CFT so that it is replaced by

〈Φδ
Q1
e−iω1X0,Φδ

Q2
e−i(ω2+σ)X0〉CFT = |Cδ(Q1)|2δ(Q1 −Q2)δ(ω1 + ω2 + σ) .

Substituting this into the above expressions for C1(P1, P2) we obtain

Cσ
1 = ξ1ξ2|Cδ(P1)|2f(P1)

d(−P1 − σ)

(−P1 − σ + iǫ)2 − P 2
1

. (8.7)

We observe that in the limit σ → 0 the divergence comes from restricting on the mass shell

the expression ((ω+ iǫ)2 −Q2)−1. The later can be interpreted as the asymptotic free field

propagator. The divergence has the form

Cdiv
1 = ξ1ξ2|Cδ(P1)|2f(P1)

d(−P1)

2P1σ
. (8.8)

7This can be done more mathematically accurately by first regularising this expression, as will be done

below, and then removing the regulator.
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After the same substitution done for Cµ(P1, P2) we obtain by taking integrals in Q1, ω1

Cσ
µ = 2µrξ1ξ2

+∞∫

−∞

dωd−P1
(ω)d−P2

(−ω − σ)Iσ(ω) (8.9)

where

Iσ(ω) =

+∞∫

−∞

Q2dQ

[(ω + iǫ1)2 −Q2][(ω + σ − iǫ2)2 −Q2](δ2 +Q2)
.

The integral Iσ(ω) can be computed by taking the residues in the complex upper half plane

at Q = iδ, Q = ω + iǫ1, Q = −σ − ω + iǫ2. We obtain

Iσ(ω) = − πδ

(ω2 + δ2)2
− πi

σ(ω2 + δ2)
.

Here the second term which is divergent came from the residues taken at Q = ω + iǫ1,

Q = −σ−ω+ iǫ2. Thus again, as in the case of Cσ
2 , the divergences come when one of the

asymptotic propagators is put on shell. The divergence can be isolated to be

Cdiv
µ = −2πiµrξ1ξ2

σ

+∞∫

−∞

dω
d−P1

(ω)d−P2
(−ω)

ω2 + δ2
(8.10)

The point of doing the above calculations in detail was to show that the divergences

arise when one of the expressions of the form ((ω + iǫ)2 − Q2)−1 is reduced to one of

the values ω = ±Q = ±P1,2. Since such an expression originates as a term in (3.24) that

stands at Φδ
Qe

−iωX0 we see that the corresponding state is projected onto an on-shell value.

Furthermore the propagator itself contains on-shell delta functions δ(Q ± ω) so that we

can interpret the divergence at hand as the one arising in a CFT two-point function for

two on-shell operators in the undeformed theory: 〈Φδ
Q1
e−iQ1X0 ,Φδ

Q2
e−iQ2X0〉CFT. The last

expression formally evaluated contains δ(0).

So far we have considered only the CFT two-point function. For open strings of the

FZZT brane in two dimensional string theory a consistent string theory two point function

can be extracted from the ground ring relations [12]. Formula (D.12) of [12] taken for b = 1

in our notations reads8

〈Φδ
Q1
e−iQ1X0,Φδ

Q2
e−iQ2X0〉str = 2πQ1|Cδ(Q1)|2δ(Q1 −Q2) . (8.11)

(It is assumed here that Q1,2 > 0.) The appearance of the Q1 factor in the above expression

was to be expected from relativistic invariance in the asymptotic region.

The fact that the divergences in a two point function of the time-dependent theory

arise from overlaps of pairs of states that are on-shell in the undeformed theory implies

8To obtain formula (8.11) from formula (D.12) of [12] one needs to take into account different normal-

izations given in (2.9) of [12] and the fact that in [12] a Euclidean signature time field is considered. The

latter results in an overall sign change.
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that we can use formula (8.11) to extract finite results from those divergent pieces. The

string theory two point function can be defined as9

〈Φ−P1
(ν)Φ−P2

(ν)〉str := 2πi lim
σ→0

σ〈Φ−P1
(ν), : e−iσX0

∣∣∣∣
∂

∂X0

∣∣∣∣ Φ−P2
(ν) :〉CFT (8.12)

where | ∂
∂X0

| stands for an operator formally defined as

:

∣∣∣∣
∂

∂X0

∣∣∣∣ e−iωX0 := |ω| : e−iωX0 : .

With this prescription applied to the divergent parts (8.8), (8.10) we readily obtain an

expression that can be recognized as the expression in the right hand side of (8.1) multiplied

by a factor of 2, that is

〈Φ−P1
(ν)Φ−P2

(ν)〉str =

∞∫

0

dQ[αP1
(Q)βP2

(Q) + αP2
(Q)βP1

(Q)] = 2

∞∫

0

dQαP1
(Q)βP2

(Q)

(8.13)

where in the last step we used the second relation in (6.5). Formula (8.13) is the main result

of this section. It means that for the class of outgoing particles with wavefunctions (7.9)

the pair creation amplitudes computed via Bogolyubov coefficients (6.4) coincide with a

suitably defined string theory two-point function.

9. String theory three point function

In this section we will compute the string three point function of the operators Φ−P (ν).

This amplitude does not contain any divergences and the computation is straightforward.

It boils down to computing the CFT three point function which is then stripped of its

dependence on the insertion points. Thus in the following we will suppress the insertion

points.

We start by substituting expansions (3.6), (3.24) into the three point function

〈Φ−P1
Φ−P2

Φ−P3
〉CFT (9.1)

and using (2.20), (8.6). This yields the following expression

〈Φ−P1
Φ−P2

Φ−P3
〉str = 2π

∞∫

−∞

dt h(t,−P1)h(t,−P2)h(t,−P3) (9.2)

where the function h(t,−P ) is given in (3.19). The above integral can be conveniently

computed by using the Fourier transform of the integrand. The integrand up to an ex-

ponential factor exp(−it(P1 + P2 + P3)) is a polynomial in functions W (t). The Fourier

transforms of powers W n(t) can be readily computed using the differential equation

W 2 = δW − ∂tW . (9.3)

9The numerical factor in (8.12) depends on the particular choice of the regularization parameter σ. We

fixed this ambiguity essentially by hand to yield the correct final expression. A more satisfactory solution

to this problem would involve identifying uniquely a σ-regularization of the volume of residual modular

group.
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This differential equation implies the recurrence relation for the Fourier transforms Ŵ n(ω̃)

Ŵ n+1(ω̃) = δ(1 +
iω̃

n
)Ŵ n(ω̃) (9.4)

that can be solved as

Ŵ n(ω̃) = δn Γ(n+ iω̃)

Γ(1 + iω̃)(n − 1)!
Ŵ (ω̃) . (9.5)

This implies that the amplitude has the following form

〈Φ−P1
Φ−P2

Φ−P3
〉str =

ξ0(−p1)ξ0(−p2)ξ0(−p3)P (p1, p2, p3)

p1p2p3(p1 + i)(p2 + i)(p3 + i)
Ŵ (p1 + p2 + p3) (9.6)

where P (p1, p2, p3) is a polynomial. The last one can be computed using (9.5). Using

Maple we arrive at the following compact looking result

〈Φ−P1
Φ−P2

Φ−P3
〉str =

2π

15
F (p1)F (p2)F (p3)

(Π(p1) + Π(p2) + Π(p3))

sinh[π(p1 + p2 + p3)]
(9.7)

where

F (pi) =
νipi

π
√
µrδpi(1 + p2

i )
, (9.8)

Π(p) = 2p+ 5p3 + 3p5 . (9.9)

We conjecture that this expression, being integrated with wave function factors φi(pi),

i = 1, 2, 3, gives a triplet creation amplitude due to string interaction. The outgoing states

in this amplitude have wavefunctions of the form (7.9).

10. Choice of the “in” vacuum

In this section we will discuss how one can specify completely a reasonable set of “in” vacua

and will find the corresponding expressions in terms of the “out” states. To complete the

definition of |0〉in we need to specify the initial quantum state of the η mode described by

the upside-down harmonic oscillator (7.7) with symplectic form (7.3).

Note that the value of ν can be offset by a suitable time translation so from now on we

will set it equal to 1. The canonically conjugated momentum to the quantized coordinate

η̂ is

π̂ =
µ̃

4δ2
∂̂tη

and the Hamiltonian reads

Ĥ =
2δ2

µ̃
π̂2 − µ̃

8
η̂2 . (10.1)

The canonical pair q̂ and p̂ is related to η̂, π as

q̂ =
1

2
µ̃1/2η̂ − 2δµ̃−1/2π̂ ,

p̂ =
µ̃1/2

4δ
η̂ + µ̃−1/2π̂ . (10.2)
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Since the Hamiltonian (10.1) is unbounded from below there is no vacuum state for

this system. On the other hand any reasonable initial state for the decaying FZZT brane

should have the tachyonic mode localized around the zero value. We thus require that

in〈0|η̂2|0〉in = a . (10.3)

Since the value of the η variable in the new vacuum is u∗ = 2δ it is reasonable to require

a≪ 4δ2. Among all states satisfying the constraint (10.3) one can find the state for the η̂,

π̂ system that minimizes the expectation value of the energy (10.1) [22, 21]. The result is

a Gaussian wave function

ψ0(η) = (2aπ)−1/4e−η2/4a . (10.4)

The time evolution of this wave function is [21]

ψ(η, t) = A(t)e−η2B(t) ,

B(t) =
µ̃

8δ
tan(φ− iδt) , A(t) = (2π)−1/4[b cos(φ− iδt)]−1/2

φ = arctan

(
2δ

µ̃a

)
, b = (sin(2φ))−1/2(4δ/µ̃)1/4 . (10.5)

For any value of a the wave packet rapidly spreads. For small values of a this happens

due to the uncertainty principle while for large values due to the unboundedness of the

potential. For large times the speed of the spread is exponential, proportional to eδt. The

η degree of freedom however is described by an upside down oscillator only asymptotically,

at some point the interaction effects become significant with the energy of the η degree of

freedom being lost into radiation.

The initial wave function (10.4) satisfies

π̂ψ0(η) =
i

2a
ηψ0(η) . (10.6)

In terms of the operators q̂, p̂ this condition reads

p̂ψ0 = Caq̂ψ0 , Ca =
(1 + i 2δ

µ̃a)

2δ(1 − i 2δ
µ̃a)

. (10.7)

We add the condition p̂|0〉in = Caq̂|0〉in to the conditions ain
P |0〉in = 0 characterizing the

“in” state. These equations have a unique solution in terms of the “out” oscillators.

Using (6.21), (6.12) one finds that a solution to equations ain
P |0〉in = 0 has the following

general form

|C〉 = F [q̂] Ĝ|0〉out (10.8)

where

Ĝ = exp

[
1

2

∞∫

0

∞∫

0

dQ1dQ2

[ ∞∫

0

dPγ∗Q1
(P )β∗P (Q2)+ γ∗(q1)(β(q2)−α(q2))

]
aout†

Q1
aout†

Q2

]
. (10.9)

One further finds that

p̂Ĝ|0〉out = iq̂Ĝ|0〉out . (10.10)
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Equation (10.7) fixes the function F so that the state

|a〉in ≡ exp

[
1 + iCa

2
q̂2

]
Ĝ|0〉out (10.11)

solves the conditions ain
P |a〉in = 0 and p̂|a〉in = Caq̂|a〉in. It can be used to compute generic

pair creation amplitudes out〈Q1Q2|a〉in. It would be interesting to find out whether there

is a prescription for computing such amplitudes via a suitable string theoretic two point

function. Using (6.14), (6.21) one finds that

∞∫

0

dP γQ(P )Φ−P (ν) +
√

2/µ̃γ(q)δ− = Ψ−Q(ν) + . . . (10.12)

where the dots stand for out-states of positive frequency. This combination is a natural can-

didate for a vertex operator whose string theory two point function gives the out〈Q1Q2|a〉in
amplitude. The difficulty in defining a two point function for these operators is in defining

it for terms involving δ̃(ν). One would need to make sense of correlators of the form

〈e−δX0(x1)e
iωX0(x2)〉 (10.13)

where the correlator is taken in the unperturbed theory (in the far past). The naive zero

mode integral involved in this expression diverges. One could imagine that a prescription

defining the two-point function for exponentially blowing up operators like δ̃(ν) can be

found and may involve a parameter a that could be identified with the a present in the

definition of |a〉in. At present we have no idea how this can be done.

11. Summary and further directions

In this paper we computed to leading order in δ string vertex operators for the time-

dependent model of [2]. The expressions giving time dependent vertex operators for string

states asymptoting to “in” and “out” states are given in (3.20), (3.24), (5.14), (5.15).

Several special solutions at zero momentum were identified (see (3.29), (3.34), (6.9)). We

defined bases of “in” and “out” scattering states corresponding to scaling operators at

the associated UV and IR fixed points (see formulas (4.14), (4.18)). The complete set of

Bogolyubov coefficients was obtained in (6.7), (6.8), (6.14) and unitarity relations between

them checked.

We further discussed the second quantization of this system and identified a codi-

mension one subspace of out-going wave functions for which the pair creation amplitudes

are independent of the ambiguity in defining the initial state of the tachyonic mode. We

then showed in section 8 that this set of amplitudes can be obtained in the first quantized

framework by computing the appropriate string theoretic two-point functions. As we dis-

cussed in section 8 the main difficulty with computing string two point functions in general

is in the need to define a ratio of two infinite factors. Our computation proceeded in a

somewhat ad hoc manner, utilizing the known results for two point functions in noncritical

string theories [10, 12]. It is clear that a deeper understanding of string theory two point
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functions and a general method for their computation is needed. For the same codimension

one subspace we computed a string three point functions (9.7) and conjectured that it gives

a triplet creation amplitude due to string interaction. A possible test of this conjecture

could come from an open string field theory description of the model. One could envision

a Das-Jevicki type [23] theory with a fundamental cubic vertex. The triplet creation am-

plitude would be then analogous to the one computed in [17] for a scalar φ3 theory in an

expanding universe.

In the main body of the paper we discussed two special features related to the tachyonic

nature of the onset of the time-dependent process at hand. The first feature is the need

to deal with solutions exponentially blowing up in the far past while the second, related

feature, is the ambiguity in defining the quantum initial state of the system (the absence

of Fock vacuum). We suspect that both of these peculiarities generically take place in

tachyon decay processes. We discussed the second feature in some detail in section 10

where, following the ideas of [21, 22], we constructed a family of physically reasonable

initial states (10.11) in the second quantized oscillator state space.

As for the presence of exponentially blowing up vertex operators in the scattering

spectrum consider a string background whose spatial CFT has relevant operators Φi. Fol-

lowing [20] one can consider a time-dependent CFT perturbed by a marginal operator of

the form λΦie
X0pi where λ is a coupling constant and pi > 0. Such a background will

have an infinitesimal deformation corresponding to varying λ. In the far past the cor-

responding vertex operator vanishes while generically it will not vanish in the far future

where it is described by some superposition of outgoing scattering states. Assume that

the time-dependent CFT has a conserved inner product (1.17). We then see that the only

way to reconcile the existence of vertex operators vanishing in the far past but not in the

far future with the conservation of inner product is to admit the existence of solutions

blowing up in the far past. A vertex operator asymptoting to positive frequency “out”

states will generically blow up in the far past. Thus computing general amplitudes will

require making sense of correlators involving vertex operators that exhibit such blow up

behavior. The standard first quantized formalism of string theory does not provide us

with a prescription to compute such correlators. One could hope however that it can be

augmented by such a prescription or prescriptions. If such a prescription was found one

could use it to reconstruct the corresponding initial state in the secondary quantization,

possibly matching it to one of the physical initial states constructed in section 10. We

hope to come back to this issue for the model studied in this paper in future work. This

problem may test the limits of the first quantized formalism for time-dependent problems.

It is worth mentioning in this context a problem of UV divergence in the number of emit-

ted closed string particles radiating from decaying D-branes [24]. It was shown that the

problem that is present in the first quantized approach gets cured for decaying D0 branes

in two dimensional string theory in the second quantized formalism [25]. The divergence

disappears when one includes in consideration the initial wave function of the D0 brane.

For the model considered in this paper it would be also interesting to study one-loop

amplitudes and the first order backreaction effects due to radiation of open and closed

strings. We leave these questions for future work.
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A. Relations for Bogolyubov coefficients

Checking relations (6.5) boils down to proving the following identity

+∞∫

−∞

dq
q3

sinh[π(q − p1 − iǫ)] sinh[π(q − p2 + iǫ′)]
=
p2
1(p1 − i)2 − p2

2(p2 + i)2

2 sinh[π(p2 − p1 − iǫ)]
(A.1)

where p1 and p2 are any two real numbers. To compute the integral above we first compute

a generating function

Ip1,p2
(t) =

+∞∫

−∞

dq
eiqt

sinh[π(q − p1 − iǫ)] sinh[π(q − p2 + iǫ′)]
. (A.2)

It can be evaluated by summing the appropriate residues in the q-complex plane

Ip1,p2
(t) =

2i

sinh[π(p2 − p1 − iǫ)]

(
eitp2e−t − eitp1

1 − e−t

)
. (A.3)

The right hand side of identity (A.1) can be evaluated now by computing i[∂3
t Ip1,p2

(t)]t=0.

The second pair of relations between Bogolyubov coefficients (6.6) follows from the

following identity

P.V.

+∞∫

−∞

dp
1

p(1 + p2)2 sinh[π(p− q1 − iǫ)] sinh[π(p − q2 + iǫ′)]
=

1

2 sinh[π(q2 − q1 − iǫ)]

(
1

q22(q2 + i)2
− 1

q21(q1 − i)2

)
+ δ(q1, q2) (A.4)

where

δ(q1, q2) = −π
2

2

(
cosh(πq1)

sinh2[π(q1 + iǫ)] sinh[π(q2 − iǫ′)]
+

cosh(πq2)

sinh[π(q1 + iǫ)] sinh2[π(q2 − iǫ′)]

)
.

(A.5)

This identity can be obtained by taking the integral via summing over the residues in

a complex half plane. Substituting the explicit expressions (6.4) into the left hand side

of (6.6) and using (A.4) we obtain the right hand side of (6.6) with

d(Q1, Q2) = −4

δ
|q1q2|3/2νi(q1−q2)

(
q1 − i

q1 + i

)(
q2 + i

q2 − i

)
δ(q1, q2) (A.6)

that can be equivalently written as

d(Q1, Q2) = 〈δ(ν), δ̃(ν)〉KG[α(−q1)β(q2) − α(q2)β(−q1)] .
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